Learning from Instructional Rounds

Elizabeth A. City

When teachers conduct instructional rounds, they focus on why a problem of practice persists schoolwide—and on what they can do about it.

How do we improve our collective teaching practice? How do we ensure that every classroom is a place of rich and valuable learning for all students? And who's responsible for doing so?

Over the last several years, my colleagues and I, in collaboration with educators across the United States, Canada, and Australia, have tried to answer these questions. The model we've developed to improve instructional practice is based on medical rounds, the primary way that doctors learn and improve their practice. We call the approach instructional rounds.

The practice, which began with administrators, has become increasingly popular in schools. Teachers are usually the most enthusiastic rounds participants, leading the next evolution of the practice.

What Are Instructional Rounds?

Instructional rounds are a disciplined way for educators to work together to improve instruction (City, Elmore, Fiorman, & Teitel, 2009). The practice combines three common elements of improvement: classroom observation, an improvement strategy, and a network of educators. Many educators currently use one or more of these elements, often with some success. In our own work, my colleagues and I have found that it's the combination of elements that's most powerful. We have also found that it's hard to dislodge familiar habits and behaviors that serve different purposes, the most ingrained of which are supervision and evaluation.

Instructional rounds contrast with supervision and evaluation on a number of dimensions, the first of which is learning (see fig. 1, p. 39). Rounds are an inquiry process. People doing rounds should expect to learn something themselves. In supervision and evaluation, only the person being observed is expected to learn. I think of this as the difference between looking through a window (supervision and evaluation) and holding up a mirror (rounds).

| **Figure 1. Instructional Rounds Versus Supervision and Evaluation** |
|-----------------------------|-----------------------------|-----------------------------|
| | **Instructional Rounds** | **Supervision and Evaluation** |
| **Learning stance** | Inquiry: Genuinely want to learn something ourselves | Informative: Genuinely want someone else to learn something |
| | Main learners: The observers | Main learner: The observed |
| **Unit of improvement** | Meant to improve the collective (school, system) | Meant to improve the individual |
| **Accountability** | Lateral (peer-to-peer) | Positional (top-down) |
| **Output** | Next level of work, collective commitments | Evaluative feedback, prescriptions for next steps |
| **Primary focus in the classroom** | The instructional core, especially the students and the tasks they're engaged in | The teacher |
Participants in rounds, particularly teachers, emphasize the learning they do as observers. “My teachers schooled me pretty quickly on this—you don't learn anything by being observed, only by observing,” said John Roberts, assistant director at Lowell Middlesex Academy Charter School in Lowell, Massachusetts, after introducing rounds to his faculty.

Rounds are not about “fixing” individual teachers. Rounds are about understanding what's happening in classrooms, how we as a system produce those effects, and how we can move closer to producing the learning we want to see. This focus on "we" means that peers learn to hold one another accountable, individually and collectively. For rounds to accelerate improvement, educators need a protocol for taking next steps that they’ve committed to on their own. They don't rely on someone with formal authority to enforce agreements or on others to comply with mandates. In the California Rural Network, for example, superintendents do follow-up visits with one another after rounds visits. They say this follow-up visit from a peer helps them take action amid multiple competing priorities.

Rounds are fundamentally descriptive and analytic, not evaluative. At no point in rounds do we declare what we see to be "good" or "bad" or something we "like" or "don't like." Observers don't tell the observed what to do next to improve. However, observers do think about “the next level of work” or what the school or district could do to make progress in a problem area.

Finally, because rounds are about the instructional core, when my colleagues and I are in classrooms we focus on the interactions among teachers, students, and content. Effective supervision and evaluation, of course, pay attention to these things as well. However, educators consistently say that one of their early changes in practice as a result of participating in rounds is a shift of attention from the teacher to the students and the tasks they're engaged in.

How Do You Do Instructional Rounds?

Although educators adapt rounds to their purpose and context, the essential practice looks the same and relies heavily on protocol: You gather a group of colleagues who will meet together over time (that is, you form a network); you define a problem of practice connected to your improvement strategy; you visit classrooms in small groups; you debrief after the observation; you identify next levels of work and build the group’s relevant knowledge and skills; and you repeat this process often.

Assemble a Network

Some networks are composed of peers (all superintendents, principals, or teachers). Others have cross-functional groups (teachers and administrators together or multiple roles across a district). Some educators build on existing networks and incorporate rounds into their practice; others form new networks for rounds. Some are intentional about who is in the network (for example, staff members in shared content areas or in cross-content areas that focus on a shared issue); others are pragmatic (for example, those who have a common planning period do rounds together). The same group meets over time, giving members the opportunity to build a trusting, respectful community that pushes itself hard and develops a common language and understanding of learning and teaching. Networks typically range from 8 to 30 members.

Define the Problem of Practice

A problem of practice is something the school cares about, feels stuck on, and wants to understand more deeply. A problem of practice focuses on instruction, is observable and actionable, connects to a broader strategy of improvement, and is high leverage (City et al., 2009). See “Common Problems of Practice” (p. 40) for examples.

Schools vary in their process for determining a problem of practice. The process works best when it's connected to ongoing improvement work and is based on data. A school might convene its instructional leadership team and ask the following questions: Where do we feel stuck? Where are we struggling? How do we know we're struggling? Which situation do we need help collecting data on and thinking about?

Schools sometimes invite the whole faculty to identify a problem of practice; sometimes they work with their leadership team to identify a problem. And sometimes, frankly, they pluck the problems of practice out of thin air, with
just the principal deciding what the "problem" is. I don't recommend that option, as it usually results in little improvement and in data that teachers aren't all that interested in.

Ballarat Clarendon College, a K–12 school in Victoria, Australia, started with this problem of practice:

We've noticed that our students are more often engaged in tasks that involve remembering and understanding than in tasks that involve analyzing, evaluating, and creating. Some students aren't getting enough opportunities to practice higher-order thinking skills and to take an active role in the learning process.

At Lowell Middlesex Academy Charter School, teachers thought that students struggled with intellectual curiosity. Students sat in class "absorbing" and didn't ask questions. After examining this problem of practice in rounds, teachers decided that the level of the task assigned might have something to do with students' lack of intellectual curiosity, so they shifted the problem of practice to be about the level of the task and the level of teacher questioning.

Observe in Classrooms

The network divides into small groups of approximately four people. Each group typically visits four classrooms, staying 20–25 minutes in each. Observers don't have rubrics to guide them because they're gathering descriptive data rather than assessing against a rubric. However, they usually do have focus questions related to the problem of practice, such as, What are students doing and saying? What's the teacher doing and saying? What's the task? They also question students about what they're working on, what they do when they don't understand something, and how they know whether their work is good or great.

The problem of practice acts as a filter. In classrooms, observers don't pay attention to all the things they think are important. For example, if the problem of practice is about higher-order thinking skills, observers try to ignore how well students are behaving, what is or isn't on the walls, or whether the teacher wrote the objective on the board. Observers also don't do an implementation check on a given strategy. They're detectives, not inspectors. They try to unlock the mystery of why the school is stuck, why this problem of practice persists, and what might help the school get unstuck.

Between classroom visits, observers don't chat about what they saw or what they thought about what they saw. They save that for the formal debrief.

Debrief

Lowell Middlesex Academy assistant director John Roberts finds the rounds protocol crucial. "The reason we follow this protocol," he notes, "is that it separates us from the practice and keeps us from being the crazy, judgmental human beings we are." The debriefing protocol moves in steps from description to analysis to prediction and leads participants into identifying the next level of work.

Describe. In the description phase, the various observation groups come together to share the evidence they collected related to the problem of practice. Evidence is most helpful when it's specific and descriptive as opposed to judgmental or general. Gathering and stating specific, descriptive evidence are learned skills that educators can help one another with. When you hear something judgmental—such as, "The teacher talked too much" or "The questions were mostly low level"—ask "What's the evidence?" When you hear something general—such as "The teacher asked lots of questions"—ask for specificity, for instance, "What were some specific questions the teacher asked?"

Analyze. Having built the evidentiary foundation for a strong discussion, observation groups move into the analysis phase, looking for patterns across the evidence and noting exceptions to the patterns. Patterns might include the following:

- Teachers ask questions that require one- or two-word answers, and students respond with one or two words.
- Students sit in groups, yet work individually.
- The pattern of interaction is teacher–student–teacher, with teachers initiating the conversation.
We pause at this point in the debriefing session so each group can share the patterns it has seen. Often, a distinct pattern will emerge across the school—that tasks are low level, for example—but sometimes groups see different patterns in a certain grade level, content area, or classroom.

Predict. Next, the protocol asks, "If you were a student in these classes today and you did everything the teacher asked you to do, what would you know and be able to do?" This question doesn't ask what you think teachers hope students will learn or what the objectives written on the board are, but what students would actually learn if they completed the tasks given to them. For example, observers might predict that students would be able to follow directions, recall information, or complete mathematics problems if they had the formula for the problems in front of them.

Identify the Next Level of Work

Taking into account all the evidence, what do we now understand about this stuck place? How can the school focus its energy and resources to make progress on the problem of practice? What new knowledge and skills might teachers need, and how might the school support that learning?

For example, a rounds visit might reveal that in a school whose students struggle with higher-order thinking, teachers typically give students fairly low-level tasks. The next level of work might be for the teachers to see these data together—for example, teachers might collect all the tasks given on a certain day and then assess them using a framework like Bloom's taxonomy.

On the basis of their assessment, the teachers might identify the support they need, which might involve having more time to design tasks together or receiving training in Bloom's taxonomy. At the same time, school leadership might not only reorganize planning time to make it possible for teachers to design tasks together, but also look at how challenging the tasks are that **adults** are being asked to complete during professional development and other meetings. The school might stop having informational meetings where teachers are just called on to listen and, instead, create sessions where teachers are challenged as learners.

Different networks experiment with different ways of formulating the next level of work. Some brainstorm action steps for this week, next month, and by the end of the year. Others generate reflective questions to prompt further thinking, such as, In a differentiated classroom, what would teachers and students be doing? or How do teachers know that their students understand? At Lowell Middlesex Academy Charter School, teachers create commitment cards and post the cards in their classrooms. For example, one might read, "Ask a question at the evaluation level at the beginning of class."

Inevitably, rounds bring to the surface areas of need that can inform professional development. In Boston Public Schools, for example, high school principals worked together to generate a common definition of rigor but realized they didn't all agree on what it looked like in the classroom. Through rounds, they identified a districtwide pattern of tasks focused on remembering, understanding, and, from time to time, applying. The next level of work was engaging teachers in rounds and developing a deeper understanding of rigor.

As a result, the central office designed a course on rigor and the practice of rounds. Teachers learned that students with low skills do not need low-level tasks—rather, they need supports to successfully engage with high-level tasks. They also learned to compare the stated task with the enacted task, which may be more low-level than expected; students may simply be doing more of something or following the teacher's example rather than really using their minds. Teachers took the course, learned how to do rounds, and will facilitate rounds focused on rigor as a problem of practice in their schools.

For Judith Blanco, district instructional coach for Boston's high schools, rounds are a "cyclical process that ties your whole school improvement plan, your professional development, and your rounds together, all informing each other." Because the process is cyclical, she says, "rounds shouldn't be one-time events." Melissa Chen, science teacher at Lowell Middlesex Academy Charter School, agrees: "We don't see rounds as an extra thing—they're part of what we do." At Lowell Middlesex Academy, teachers do rounds once a week. Teachers at Ballarat Clarendon College do rounds once every two weeks. Other networks do rounds once a month. Frequency matters.
Why Do Instructional Rounds?

Rounds are time-consuming, complex, and challenging. So why bother? Several educators I asked suggested the following reasons:

- **To take improvement to the next level.** In the California Rural Network, school districts had been engaged in improvement through Reading First and other efforts. As a result, they were experiencing improvements in student achievement. They believed they could take student and adult learning to the next level, but they weren't sure how to do it. Rounds have helped them build on their earlier improvement efforts.

- **To build a common understanding of effective learning and teaching.** Educators in the California Rural Network think that rounds are a valuable way to explore the following questions: Do we know what effective instruction looks like? Do we recognize it when we see it? Do we agree?

- **To reduce variability.** Educators at Ballarat Clarendon College do rounds "because we know there's a significant difference in levels of instruction among classrooms." They think rounds will help them reduce variability by focusing on tasks in classrooms and getting shared commitments about how to improve.

- **To focus the work.** Melissa Chen says that rounds help Lowell Middlesex Academy focus: "There are so many things we want to improve, and it helps to put more of our energy in one place, to choose one problem a year that we want to look at."

- **To put educators in charge of their own learning.** Judith Blanco sees rounds as building on Boston's previous coaching work. According to Blanco, it's "a way of getting teachers to observe one another's practice in a nonevaluative way. It's a process and structure to make that happen." Connie Tate of the California Rural Network explains,

 We're trying to build collective efficacy. It's really behavior modification: Tell me what to do, and I'm going to resist it, but give me time, let me do it and see the results…and I'll change my behavior.

- **To provide data and inform professional development.** Lowell Middlesex Academy uses rounds to inform professional development in a targeted way and create a feedback loop for teachers: "It's hard to plan professional development if we don't all agree on what we're seeing in our classrooms." Similarly, educators at one Boston high school said,

 The data from instructional rounds give us a more complete picture of student learning and bluntly show whether professional development has had an impact on student performance—[and] whether we have adequately addressed the problem of practice.

Ultimately, educators choose to do rounds because they find them a powerful way of continually informing and improving their practice. One educator in the California Rural Network captured her experience:

We're finally having conversations about instructional practice. I've learned more about myself as a teacher and about quality instruction in one day of instructional rounds than in five years of professional development.

It's in Our Hands

Done poorly or briefly as just another initiative, rounds, like any improvement effort, will have little effect. At worst, poorly done rounds will suggest that we educators are incapable of improving our own practice. However, done well, in a way that is sustained, and integrated with an improvement strategy, rounds offer the opportunity for educators to show ourselves and others what we're capable of as professionals and to develop learning environments in which all students can succeed.
Common Problems of Practice

Are students engaged in high-level or low-level tasks? Do teachers ask high-level or low-level questions?
Are students able to articulate their thinking in writing?
Are students able to transfer learning from one content area or grade level to another?
Is students' understanding in mathematics conceptual or only procedural?
Are students active or passive participants in class?
Are some students—such as students with special needs, English language learners, boys, or girls—performing as well as they might? If not, what does this looks like in the classroom?
Do teachers do most of the talking and thinking in the classroom?
Do teachers enact a high-level curriculum in a low-level way?
How do teachers know what students know?
How do students know the quality of their work?
What role do students play in assessment?
How do students talk with one another about classwork?

Reference

Endnote

1 We build on the early work of Tony Alvarado, Elaine Fink, and colleagues in New York City District 2 and of Andrew Lachman, Richard Elmore, and colleagues in the Superintendents' Network of the Connecticut Center for School Change.

Copyright © 2011 by ASCD
Time Observed: ______________
Grade LevelObserved: ______
Subject Observed: ____________

The students were:

The teacher was:

The task was:
Question Walkthrough Form

<table>
<thead>
<tr>
<th>The teacher …</th>
<th>The students …</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. uses an appropriate mixture of questions (Bloom's Taxonomy)</td>
<td>1. use graphic organizers (First I would, Next I would, Then I would, Thinking Maps, word banks, academic organizers)</td>
</tr>
<tr>
<td>2. phrases questions carefully, concisely, and clearly</td>
<td>2. can explain their learning (stations/independent work)</td>
</tr>
<tr>
<td>3. addresses questions to the group then the individual</td>
<td>3. make real-life connections</td>
</tr>
<tr>
<td>4. pauses to give students wait time</td>
<td>4. Use complete sentences when answering questions (using academic and content vocabulary)</td>
</tr>
<tr>
<td>5. uses a variety of strategies when calling on students (popsicle, choral, echo, individual/hands, popcorn, volunteer, think-pair-share, etc.)</td>
<td></td>
</tr>
<tr>
<td>6. allows students to answer questions rather than the teacher answering her/his own question.</td>
<td></td>
</tr>
</tbody>
</table>

The teacher uses the following strategies as listed in *Teach like a Champion* (Lemov):

1. No Opt Out (pages 28 – 34)
2. Right is Right (pages 35 – 41)
3. Stretch It (page 41–47)
4. Format Matters (page 47 – 51)
5. Without Apology (page 51 – 56)
6. There is evidence of using preplanned questions.

COMMENTS: Student Work (Level of Rigor)

<table>
<thead>
<tr>
<th>____REMEMBER (KNOWLEDGE)</th>
<th>____UNDERSTAND (COMPREHENSION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>____ APPLY</td>
<td>____ ANALYZE</td>
</tr>
<tr>
<td>____ EVALUATE</td>
<td>____ CREATE (SYNTHESIS)</td>
</tr>
</tbody>
</table>
Do We Understand the STAAR Definition of Rigor and Depth?
by Holly Duncan

Since the announcement of the new assessment, State of Texas Assessment of Academic Readiness (STAAR), the first question has been: What’s the difference? The corresponding answer has been: “It’s the rigor and depth.” This question and answer have left Texas educators wondering if they share the same definition of rigor and depth as the test writing teams. Texas public school students will take STAAR for the first time in spring 2012, and there is still a multitude of unanswered questions as schools prepare teachers, students and parents for the new state requirements for grade promotion and graduation. Many of the questions to which there are no answers can wait, but since fall semester is well under way, the variable that identifies the correct amount of rigor and depth is one that cannot wait any longer. Translating state terminology has become full time jobs for many education experts. Much research has been completed analyzing terms, “such as” and “including” to determine the specificity of the Texas Essential Knowledge and Skills. Now the attention has turned to accurately providing a definition for rigor and depth.

Preparing students to be globally competitive requires schools to advance not only the content knowledge, but the creative problem solving abilities of all students. This level of rigor is described as students need to know what to do when they do not know what to do.” (McNulty & Quaglia). When schools examine the levels of rigor and depth, it is critical to identify which component will need support. Is it the ability to perform on standardized tests, the quality of curriculum or the teacher in the classroom?

Standardized testing is a state and federal requirement that is here to stay. Beginning with No Child Left Behind (NCLB), which emphasized helping low-achieving students improve basic reading and math, the federal government encouraged states to produce tests that have measured relatively low-level skills.” (Dillon, 2010)

While the effects of high stakes testing are often debated, it is now reported that “There is emerging evidence that high-stakes state assessment is a potent policy for bringing about positive changes in student learning. In a re-analysis of the gain comparison between state assessment and National Assessment of Educational Progress (NAEP), average NAEP increases were much higher in high-stakes schools compared with no-stakes schools.” (Education Research). The immediate priority for practitioners is to accept the responsibility of these requirements and find the strategies that will increase student success on the assessments. Learning about the structure of the new test will help educators identify ways to appropriately increase rigor and depth.

According to TEA, the rigor and depth of STAAR will be a result of improved alignment between the Texas Essential Knowledge and Skills (TEKS) and the assessment. The Texas Assessment of Knowledge and Skills (TAKS) has been criticized for asking questions on a level of cognitive ability that was below what was written in the TEKS. For example, TEKS may expect the student to “analyze” while the
corresponding TAKS question would only require a student to "recall." This misalignment has been revised on the new assessment. Educators will have to sharpen their understanding of Bloom's taxonomy and be able to match the verbs used in the student expectations to adjust instruction. Standards test writers have been able to ask multiple questions in varying degrees on the same topic. Some student expectations can now be asked in hundreds of ways. The student's ability to apply knowledge and transfer problem solving techniques to many different situations is vital. In order to sharpen this type of thinking, the students must be given the opportunities to observe, practice and develop these abilities. The assessment revision demands a re-examination of curriculum and instructional components.

"Preparing students to be globally competitive requires schools to advance...content knowledge [and] creative problem solving abilities."

The new vocabulary of "readiness" and "supporting" is also an indicator of improved alignment. The STAAR blueprints provide a breakdown of how the test questions are disproportionately divided by readiness and supporting. Teachers will need to know that readiness standards must be mastered during the current year and supporting standards will or have been introduced and mastered in other grade levels. When teachers are planning the time they will spend on instruction of individual TEKS, it is imperative that they consider the areas of emphasis in the curriculum versus the assessment. According to TEA, approximately 70% of the student expectations for a grade are classified as supporting and 30% as readiness.

In contrast, STAAR will consist of 67% readiness questions and 33% supporting questions. This indirect relationship is where the depth of questioning will occur. Because there are fewer readiness questions, the TAKS test was more likely to result in large numbers of "supported" questions.

Curriculum revision in terms of rewriting standards and course requirements has undergone many changes in the state. Texas was one of the first states that required students to take four years of math, science, social studies and English language arts in order to graduate. (Achieve.org, 2006) The addition of courses to the graduation requirements caused many schools to re-think the course sequence and the structure of the school day. TEKS Revision Committees are continually in session as educator groups from different subject areas are called together to analyze the quality and accuracy of the state standards. Matching the assessment and the curriculum is ongoing throughout the nation as schools strive to meet the federal requirements. "More than half of the more than 800 high-stakes state tests given to satisfy NCLB provisions do not appear to line up with states' academic standards." (The Aspen Institute).

Having a district curriculum resource or guide that provides continuity and alignment through the subjects and grades is necessary. It will provide clarity for teachers as they work to assimilate learning experiences that will produce mastery of the TEKS. Effective, focused, data-driven lessons can result from good assessment and clear learning objectives. The time needed to look at data and identify areas of strengths and weaknesses has been a road-block for many educators. When faced with increasing class sizes and only 45 minutes of conference/planning time, it becomes even more important for districts to provide teachers with curriculum tools and data disaggregation technology. Allowing teachers more time to focus on creativity in their instruction, develop new understanding of differentiation, and increase their content knowledge must be overcome in order for them to provide the rigor required by STAAR. The ability to see how the assessment and the curriculum must work together is only part of what must happen in rigorous classrooms. The important role of professional educators who are willing to learn what it will take to integrate the measures required for success cannot be underestimated.

"Who is the teacher?" is often asked when a discussion of rigor in the classroom occurs. Certain teacher characteristics can be the most important indicators of rigor in the class. Bill Gates' Gates Foundation, which has spent more than $2 billion restructuring schools to achieve success, is now focusing its efforts on the teacher.

"To truly support teachers, we have to understand excellent teaching," Gates said. "So for us, the challenge
became, let's analyze the teachers whose students are making the biggest gains, identify what they do and figure out how to transfer those skills to others." (Toness, 2011)

The quality of the teacher in the classroom is measured by many different indicators including; degree requirements, evaluation systems, certification exams, and student achievement on standardized testing. But even for the most talented teachers, STAAR will present new challenges.

Many Texas schools have had separate classes for remediation, language acquisition and academic acceleration. With the onset of STAAR, all students will be required to meet performance standards that emphasize college readiness; therefore, all students need to be exposed to that type of curriculum. Rick DuFour, a leader in “abolishing remedial classes and opening up honors and AP classes to all students” has proven that students can experience success in more rigorous courses. He designed systems for students and teachers that can help a district reach this goal. This plan includes extra time and support for students. (Richardson, 2011)

"The student's ability to apply knowledge and transfer problem solving techniques to many different situations is vital."

Even the best teachers. Carol Ann Tomlinson supports structuring classes where we keep "kids together in the context of high-quality curriculum but attending to their readiness needs, their interests, and their preferred ways of learning." She states that the results of this setting are "impressive." Her philosophy to assume "they can all do good work, and let's attend to the ways that they need us to teach them in order to get there" reinforces that differentiation is a concept teachers must master. (Rebora, 2010) If schools are to provide rigor for all students, teachers must have ongoing, collaborative support that changes mindsets; supports differentiation, and works to increase content knowledge.

The rigor and depth required by STAAR will not be attained in one area by one individual. Appropriate test preparation, curriculum alignment and best instructional practices delivered by professional
STAAR Definition of Rigor and Depth
continued from page 11

Educators are parts of the system that must work together to achieve success. The levels of performance required are higher than they have ever been, but consider the words of Holocaust survivor and noted psychiatrist Viktor Frankl: “If we take man as he really is, we make him worse. But if we over-estimate him, we promote him to what he really can be.” (TED, 2010) STAAR is requiring more than any standardized test Texas school children have ever seen, what will this “over-estimation” do for the quality of education in Texas?

References